Entwicklungen für das Automobil der Zukunft aus Sicht von Johnson Controls

Axel Köver, Ulrich Riedel
Johnson Controls GmbH, Burscheid

Content

- Introduction
- Need for new seat concepts
- New CFRP thermoplastic materials
- Simultaneous development of a multi-material concept
- Processing of the multi material demonstrator
- Joining of metal and composites
- Validation of the demonstrator in seat system environment
- Summary
Change

“It is neither the strongest of the species that will survive, nor the most intelligent ... It is the one that adopts fastest to change.”

Charles Darwin

CAMISMA
Introduction – Company Structure Johnson Controls

Automotive Experience
Interior systems for cars, light trucks and vans.

Building Efficiency
Controls systems, services and integrated facility management for non-residential buildings.

Power Solutions
Automotive batteries and hybrid solutions for the replacement and original equipment markets.
CAMISMA
Introduction – Financial Highlights Johnson Controls

- Founded 1885 in Milwaukee, WI.
- Listed on the New York Stock Exchange since 1965

Net sales (in billion USD)

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>25.4</td>
</tr>
<tr>
<td>05</td>
<td>27.0</td>
</tr>
<tr>
<td>06</td>
<td>32.2</td>
</tr>
<tr>
<td>07</td>
<td>34.0</td>
</tr>
<tr>
<td>08</td>
<td>36.1</td>
</tr>
<tr>
<td>09</td>
<td>34.3</td>
</tr>
<tr>
<td>10</td>
<td>40.8</td>
</tr>
</tbody>
</table>

Employees (in thousands)

<table>
<thead>
<tr>
<th>Year</th>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>122</td>
</tr>
<tr>
<td>05</td>
<td>136</td>
</tr>
<tr>
<td>06</td>
<td>140</td>
</tr>
<tr>
<td>07</td>
<td>140</td>
</tr>
<tr>
<td>08</td>
<td>130</td>
</tr>
<tr>
<td>09</td>
<td>137</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
</tr>
</tbody>
</table>

CAMISMA
Introduction – Technology & Advanced Development

- AE Product Groups drive product and process excellence
- Our mission: Provide our Product Groups with unique technologies that help them to be best-in-class with innovative, differentiating products
- Key to these technologies: Teams of leading experts in "Technology Domains" who develop world-class capabilities
CAMISMA
Introduction

- Lessen carbon footprint for CFR thermoplastics by using recycled fiber material
- Development of tailor made CFRP hybrid construction for an automotive interior structure demonstrator
- Cost competitive manufacturing processes with short cycle times
- Weight reduction >40% compared to metal structure.

Source: Evonik

CAMISMA
Introduction

CFRP’s show negative CO₂eq balance compared to steel and aluminum for automotive use

Emission balance for steel, aluminum, and CFRP at 150,000 km (kg CO₂eq)

<table>
<thead>
<tr>
<th>Material</th>
<th>Production (100 kg)</th>
<th>Use (75 kg)</th>
<th>Recycling</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>228</td>
<td>885</td>
<td>115</td>
<td>804</td>
</tr>
<tr>
<td>Aluminum</td>
<td>228</td>
<td>360</td>
<td>376</td>
<td>736</td>
</tr>
<tr>
<td>CFRP</td>
<td>525</td>
<td>1,094</td>
<td>804</td>
<td>1,823</td>
</tr>
</tbody>
</table>

1) In-use equals relative to steel (Steel defined as 100)

Source: Evonik
CAMISMA

Introduction

Leading research institutes and experts collaborate along the value chain

<table>
<thead>
<tr>
<th>Raw materials</th>
<th>Topics</th>
<th>Simulation and</th>
<th>Semi-finished</th>
<th>Integrated</th>
<th>Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>recipes</td>
<td>part</td>
<td>Component</td>
<td>Sanctor</td>
</tr>
</tbody>
</table>

CAMISMA

Need for new seat concepts

Seat structure development over the last years show the need for new seat concepts

Weight History of 6 Way manual

<table>
<thead>
<tr>
<th>Structure weight [kg]</th>
<th>D-segment</th>
<th>C-segment</th>
<th>C-segment</th>
<th>Modular Lightweight</th>
<th>Extreme Lightweight</th>
<th>Optimized steel structure</th>
<th>Multi Material Design</th>
</tr>
</thead>
</table>

- Functional integration
- 25 kg headrest + back panel
- Functional decontenting
- 15 kg additional decontenting
- Actual weight benchmark for mass production structures

Competitors

- Johnson Controls
- Optimized steel structure
- Multi Material Design

Competition

- Multi Material Design
- Optimized steel structure
- Multi Material Design

Technology & Advanced Development – Confidential – Ulrich Riedel
Weight distribution of current seat structure (average)

- **Total 1st Row Complete Seat:** $m = 16.254$ kg
- **Total 1st Row Structure:** $m = 10.357$ kg

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4W Manual Chassis</td>
<td>2.23</td>
<td>19.90%</td>
</tr>
<tr>
<td>4W Manual Track</td>
<td>3.065</td>
<td>38.42%</td>
</tr>
<tr>
<td>Foam Pads</td>
<td>5.06</td>
<td>55.11%</td>
</tr>
<tr>
<td>Manual Back</td>
<td>2.37</td>
<td>69.73%</td>
</tr>
<tr>
<td>Manual Recliner</td>
<td>1.75</td>
<td>80.42%</td>
</tr>
<tr>
<td>Head Restraint</td>
<td>0.7</td>
<td>90.89%</td>
</tr>
<tr>
<td>Trim Covers</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Additional weight saving through new innovative seat systems

- **Example: Comfort thin seat concept**
 - Use of coil spring technology from mattress industry
 - Use of standardized parts
 - Elimination of spacious foam parts
 - Improved heat and moisture transfer
 - Additional weight reduction of up to 20%
CAMISMA
Need for new seat concepts

IAA 2011 lightweight rear seat concept
- Full plastic 60% structure with glass/PA6 organo sheet reinforcement
- 30 % weight reduction achieved
- Most critical test requirements fulfilled (ECE R17, ECE R14)
- Functional integration through injection mold being process
- Tact times comparable to injection molding
- Correlation of simulation results comparable to metal

CAMISMA
New CFRP thermoplastic materials

Typical total manufacturing cost of different lightweight material options

Source: MIT, 3C
CAMISMA
New CFRP thermoplastic materials

Matrix impregnation processes' under the project plan CAMISMA

Source: Evonik

CAMISMA
New CFRP thermoplastic materials

Carbon fiber pre-processing for non-woven and continuous fiber tapes

Source: ITA
CAMISMA – Simultaneous development of multi material concept

Through the further development of the process there is a high focus on functional integration:

- Integrated Headrest
- Airbag attachment
- Trim channel
- Back panel
- Recliner attachment

Financial optimization through integrated system approach

CAMISMA – Simultaneous development of multi material concept

Legal requirements for front seat application:

- Rear impact
- Front impact with luggage rotation
CAMISMA – Simultaneous development of multi material concept

- Transfer metal requirements to composite structure
- Simultaneous development with multi-material approach: material, design, process
- Transfer topological results into composite design
- Laminate design incl. fiber orientations
- Develop metal/composite joining
- Build and correlate CFRP material cards
- Process simulation of draping

CAMISMA – Simultaneous development of multi material concept

- Optimization of structure with multi layer approach
- Include different material properties for non woven-, UD- Tapes, Injection molding material and metal
- Optimized load management through optimization of fiber layers and orientation
- Various wall thickness (not possible in classic injection molding)
CAMISMA – Simultaneous development of multi material concept

Actual weight status

<table>
<thead>
<tr>
<th>Reference</th>
<th>Target</th>
<th>Actual*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 kg</td>
<td>2.5 kg</td>
<td>1.8 kg</td>
</tr>
</tbody>
</table>

* After static/topological simulation study not including additional weight for surface coating

CAMISMA
Processing of the multi material demonstrator

One-shot process (Spri-Form)
Thermoform + mold behind of the multi-material demonstrator

First demonstrator (partial) available end of 2012
CAMISMA
Processing of the multi material demonstrator

New development aspects:
- Additional metal insert
- Handling of fiber reinforced tapes
- Varying wall thicknesses
- No contour cutting

CAMISMA
Metal Composites joining

Optimized joining of metal and composite materials

Challenges
- Variance in thermal expansion
- Contact corrosion between steel and carbon fiber
- Load transfer from carbon fiber tapes into metal interface area

Development approach
- Local inserts versus large metal inserts
- Surface treatment to improve material connection
- Bonding agent to improve chemical connection
CAMISMA
Validation of the demonstrator

Validation of the demonstrator in a seat environment
- Main static requirements for backrest and headrest loads
- Front and rear crash with dummy and luggage
- Climatic requirements need to be fulfilled (-30°C +80 °C)

CAMISMA
Summary

- Improve carbon footprint by using recycling material for medium load areas
- Improved material properties due to in-situ polymerization of PA12 on carbon fibers
- Develop multi material demonstrator that lower the structural weight by > 40 % at a high level of functional integration
- Focus on continuous and economical processes that allow high volume industrialization

After 1 year of work we are convinced that the defined goals are reachable
CAMISMA

Acknowledgement

We gratefully acknowledge the funding of the project „Carbon fibre/Amid/Metal-based Interior Structure with Multi-Material system Approach – CAMISMA“, with the number EMMM03140610, by the Federal Ministry of Education and Research (BMBF) as well as the assistance by the Project Management Jülich (PJ).

Thank you for your attention!